
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

Web Application for Text to Voice Form Transformation

Maksym Polovnikov

Supervisor: Ing. Václav Chudáček, Ph.D.

Study Program: Open Informatics

Branch of Study: Computer and Information Science

May 22, 2019

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

452769Personal ID number:Polovnikov MaksymStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Web Application for Text to Voice Form Transformation

Bachelor’s thesis title in Czech:

Webová aplikace pro převod textového formuláře do hlasové podoby

Guidelines:
1. Review existing solutions for form representation.
2. Review existing chat solutions (voice, text).
3. Design a web application for design of forms with validation, UI and user management.
4. Implement the application and provide an export for automated creating of dialogs (YAML).
5. Test on existing (DGI) chat platform.
6. Test and document the application.
7. Optionally, implement demonstration example.

Bibliography / sources:
[1] HTML Standard https://www.w3.org/TR/html/
[2] Jurafsky and Martin, Speech and Language Processing (online avail. http://web.stanford.edu/~jurafsky/)
[3] ECMA-262 stanadard, https://www.ecma-international.org/publications/standards/Ecma-262.htm

Name and workplace of bachelor’s thesis supervisor:

Ing. Václav Chudáček, Ph.D., CIIRC ČVUT v Praze

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2019Date of bachelor’s thesis assignment: 12.01.2018

Assignment valid until: 22.09.2019

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Václav Chudáček, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement
I would like to thank Ing. Miroslav Burša, Ph.D. and Ing. Václav Chudáček, Ph.D. for their
expert guidance, provided literature and language correction.

Declaration
I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, 22.05.2019 .

Abstract

The aim of this work is to design, implement and test a web application for creating forms
and filling them using voice devices, such as Amazon Alexa or using chat platforms such as
Slack.

The web application was implemented using ReactJs as front-end platform and Redux
server-side library. It has been tested on Alexa for Android and Alexa Echo dot device.

This application allows a user to create an HTML-like form with element validation, for
example : business trip insurance, food ordering, cinema ticket reservation, etc.

In this thesis we have described the process of designing, implementing and testing the
application. We have also included a detailed workflow of dialog creation together with an
example of user interaction.

Abstrakt

Cílem mé bakalářské práce bylo navrhnout, implementovat a otestovat webovou aplikaci
pro vytváření a správu webových formulářů, které mohou být přetransformovány do podoby
hlasové nebo dialogové aplikace (např. pro platformy Slack nebo Amazon Alexa).

Front-end část webové aplikace je implementována pomocí technologie ReactJs, serverová
čast používá knihovnu Redux. Vytvořené dialogy byly úspěšně otestovány na zařízení Alexa
Echo Dot a pomocí programu Alexa for Android.

Aplikace slouží k vytváření formulářů (podobných HTML formulářům), například pro
potřeby pojištění služební cesty, rezervace lístků do kina, apod. Jednotlivá pole formuláře je
možné ověřit (validovat).

V této bakalářské práci popisuji postup návrhu, implementace a testování popisované
aplikace. Je také uveden podrobný postup vytváření vzorového dialogu spolu s textovým
přepisem hlasové interakce s uživatelem.

Contents

1 Introduction 1
1.1 The purpose of the bachelor thesis . 1
1.2 Objectives . 2

2 Requirements 3
2.1 Functional requirements . 3
2.2 Non-functional requirements . 4

3 Technology overview 5
3.1 Voice response system . 5
3.2 Form builder . 5
3.3 YAML . 5
3.4 Alexa . 6
3.5 AWS Lambda . 6

4 Platform review 7
4.1 JavaScript vs Typescript . 7

4.1.1 JavaScript . 7
4.1.2 TypeScript . 7
4.1.3 Comparison . 8

4.2 Selecting a Web Framework . 8
4.2.1 Comparison . 8

4.2.1.1 Components . 8
4.2.1.2 ES6 vs ES5 vs TypeScript . 8
4.2.1.3 Templates. JSX, HTML . 9
4.2.1.4 Framework vs Library . 9

4.2.2 Web Framework . 9
4.2.2.1 Angular . 9
4.2.2.2 ReactJs . 9
4.2.2.3 Vue.js . 9
4.2.2.4 Table of comparison . 10
4.2.2.5 Selection . 10

4.3 Redux . 10
4.4 JSON Web Token (JWT) . 11
4.5 Jest . 12

CONTENTS

5 Application architecture overview 13

6 Design 14
6.1 Design the Application . 14

6.1.1 Left part . 15
6.1.2 Central Part . 15

6.2 Dialog design in YAML . 16
6.3 Process life cycle . 17
6.4 UML class diagram . 19

7 Implementation 20
7.1 Structure of the application . 20

7.1.1 "Provider" Redux . 20
7.1.2 "Container" App.js . 20
7.1.3 "Component" FormGenerator.js . 21
7.1.4 "Component" DateComponent.js and other types 21
7.1.5 "Component" ComponentEdit.js . 21
7.1.6 "Component" ComponentName.js . 21

7.2 Creating Form . 21
7.2.1 Adding form item . 22
7.2.2 Removing form item . 22
7.2.3 Setting form item question . 23
7.2.4 Setting help to the form item . 24
7.2.5 Adding/removing form item input fields 24

7.3 Deletion of form . 24
7.4 Export to YAML . 24

8 Testing 26
8.1 Unit tests . 26
8.2 Testing functionality of web application . 26
8.3 Testing dialog with Alexa . 27
8.4 Compliance with requirements . 27

9 Alexa 28
9.1 User - custom skill communication . 28
9.2 Skill structure . 28
9.3 Building custom skill . 29

9.3.1 Building the Interaction Model . 29
9.3.1.1 Intents and Slots . 29

9.3.2 Creating the AWS Lambda Function 30
9.3.3 Alexa-AWS lambda connection . 31

10 Example dialog 32
10.1 Form creation . 32

CONTENTS

11 Conclusion and future Work 35
11.1 Work accomplished . 35
11.2 Future extensions . 35

List of Figures

4.1 Redux data flow . 11

5.1 Application architecture . 13

6.1 View of the main page. On the left, user selects inputs, these are added to
the central part for editing. 14

6.2 View of the type . 15
6.3 View of the form item . 16
6.4 Example of YAML dialogue process used in our app, In square brackets we

have shown the node types. 17
6.5 Process life cycle describing the flow from the user perspective: 1)form cre-

ation and upload; 2) dialog flow via Alexa. 18
6.6 UML class diagram of the application. See description in chapter 6 19

7.1 State sharing in React and React with Redux [14]. The main difference is
that communication between components is going throw Store, so all of them
have current state of the application. 21

7.2 Creating of form item . 22
7.3 Structure of naming form item . 23
7.4 An example of setting help . 24

9.1 User-skill communication . 29
9.2 Interaction model example . 30

10.1 Example of form creation . 32

List of Tables

4.1 Comparison of JavaScript and TypeScript. 8
4.2 Comparison of ReactJs, Angular ana Vue.js 10

8.1 Compliance with requirements . 27

Chapter 1

Introduction

Jurafsky in his book "Speech and Language Processing" [8] identifies two main algorithms
classes of conversational agents.

Task-oriented dialog agents are designed for a particular task and set up to have short
conversations to get information from the user to help complete the task. Companies deploy
goal-based conversational agents on their websites to help customers answer questions or
address problems. Conversational agents play an important role as an interface to robots.

Chatbots are systems designed for extended conversations, set up to mimic the un-
structured conversational or ‘chats’ characteristic of human-human interaction, rather than
focused on a particular task like booking plane flights.

In today’s world, every day the impact of conversational agents is becoming more and
more. The rhythm of human life of the 21st century has accelerated and now things that
have not previously influenced the human schedule, become time-consuming. This is what
happens now with Web technologies, most programs or Web services try to offer their users
a more convenient way of communication, namely the Voice assistant. Over the past 5
years, thanks to companies like Google and Amazon, the scope of using voice assistants has
expanded from an ordinary task to switch to the next song to maintaining a dialogue with
the user on any topic and performing more difficult tasks. This work presents a way, how a
user, with the help of Task-oriented dialog agents Alexa, can fill the custom created form.

1.1 The purpose of the bachelor thesis

The task of the work is to implement a web application for designing and creating HTML-
like forms and transformed into voice form. When the form is created, the application will
have the functionality to create a form dialog and upload the dialog representation to dialog
system (DGI, Dialog Graph Interpreter). The outcome can be used by Alexa [2] (or other
voice) platform. The form would have standard fields (number, date) and field for help
information.

It can be used for example for:

• Plane ticket reservation

1

CHAPTER 1. INTRODUCTION 2

• Pizza order

• simple shopping list or other

1.2 Objectives

The main objectives of this work are :

1. Review existing solutions of form representation

2. Review existing chat solutions (voice, text)

3. Design a web application for design of forms with validation [1], UI and User manage-
ment

4. Implement the application

5. Provide an export for automated deployment of dialogs (YAML)

6. Test on existing (DGI) chat platform

7. Test and document the application

8. Implement a demonstration example

Chapter 2

Requirements

2.1 Functional requirements

The functional requirements specification describes the expected functionality.

1. Create Form

(a) Add/Remove input item (Modify)

(b) Set item id (Mandatory, unique)

(c) Set help (Optional, gives additional information about item) 1

(d) Add item sub-fields

2. Clear generated form

3. Process filled form (data)

4. Export to YAML

5. Upload YAML to DGI (via REST API)

6. Set validation for item fields. (i.e required field, default values)

7. AWS Lambda function to provide dialog processing

Those aspects are not related to my work, but are a part of the whole system:

1. Test with Alexa

2. Deploy AWS Lambda

3. Deploy DGI
1An example :

user says: Help or I don’t understand.
Possible help: Please, say the departure date, such as November twelve.

3

CHAPTER 2. REQUIREMENTS 4

2.2 Non-functional requirements

Non-functional requirements are requirements that specify criteria that can be used to decide
the correctness of the operation of a system, rather than specific behaviors.

1. Localization: only en_US

2. Browser portability

3. Reusability

Chapter 3

Technology overview

3.1 Voice response system

Voice response system (VRS) is a type of speech synthesis application which is used to
create a spoken sound response. Voice apps become a common thing in our world and are
used every day [3]. Unlike a text to speech system (TTS), where speech synthesis is used
to create spontaneous sentence or phrase based on human phonetics, VRS operates with
limited vocabulary in situations where the sentence or phrase that is formed follows a strict
predetermined pattern.

3.2 Form builder

Form builder (FB) is a general name for applications, the main purpose of which is to provide
a way of creating custom forms. There are existing lots of form builder applications such
as Google Forms, JotForm, Alexa form builder and so on, but none of this can provide full
functionality that is needed for completing the aim of this work

FB is an integral part of this work. Thanks to this, user could create a specific form,
that will satisfy his requirements or modify already existing forms.

Also, it’s needed to correctly collect input fields, which was created by User in a form.

3.3 YAML

YAML (Yet Another Markup Language) is a human-readable data serialization language [6].
In purpose, it is similar to XML or JSON. The structure of YAML is defined by indentation
and data are stored as a map containing keys and values associated with those keys. This
map is in no particular order, so you can reorder it at will.

In this work, YAML will represent the way of dialog processing i.e contain particular
steps of user interaction model.

5

CHAPTER 3. TECHNOLOGY OVERVIEW 6

3.4 Alexa

Alexa is a voice service from Amazon. Alexa powers devices like Echo Show, Echo Spot,
Echo Dot, etc. The most important feature of the Alexa is off course it’s hands-free voice
control, which lets users ask questions without touching the device. Alexa listen to the
voice commands and respond with appropriate responses to fulfill. Alexa is a superhuman
assistant and can understand multiple languages such as English, French, German, Japanese.
Thus Alexa can interact with millions of users from different countries without any language
barrier problems.

3.5 AWS Lambda

AWS Lambda is a compute service that lets you run code without provisioning or managing
servers. AWS Lambda executes your code only when needed and scales automatically, from
a few requests per day to thousands per second. You pay only for the compute time you
consume - there is no charge when your code is not running. With AWS Lambda, you can run
code for virtually any type of the application or backend service - all with zero administration.
AWS Lambda runs your code on a high-availability compute infrastructure and performs
all of the administration of the compute resources, including server and operating system
maintenance, capacity provisioning and automatic scaling, code monitoring and logging. All
user need to do is supply his code in one of the languages that AWS Lambda supports.

Chapter 4

Platform review

Before choosing a web framework, firstly it’s needed to determine what script language will
be used in this work.

4.1 JavaScript vs Typescript

For web development, script language is an internal part. TypeScript (TS) and JavaScript
(JS) are two widely known languages in the developing world [10].

Choosing the correct one script language can highly speed up the development process.

4.1.1 JavaScript

JavaScript is a cross-platform, object-oriented scripting language used to make webpages
interactive. This means that in the browser, JavaScript can change the way the webpage
(DOM) looks.

4.1.2 TypeScript

TypeScript is both a language and a set of tools. TypeScript is a typed superset of JavaScript
that is at the end compiled to JavaScript.

In other words, TypeScript is JavaScript plus some additional features.

7

CHAPTER 4. PLATFORM REVIEW 8

4.1.3 Comparison

JavaScript TypeScript

Early error
detection

Glaring error in JavaScript will
never be singled out for
correction until run time

Static Typing allows
to see it before run
time

Large App
Capabilities

Wasn’t created for large
applications Has large app capabilities

Script JavaScript is based on EcmaScript 6 TypeScript is a superset of EcmaScript

Table 4.1: Comparison of JavaScript and TypeScript.

Depending on requirements and personal preferences, I decided to select JavaScript by these
criteria:

• No additional setup is required for JavaScript

• ReactJs is more suitable for JavaScript

• Less chance of unexpected errors

4.2 Selecting a Web Framework

Web frameworks exist to make building a website faster and easier. Typically, frameworks
provide tools to cover the common CRUD entities. Also, they afford libraries to interact
with a database, for creating components (such as Pop-up window or ToolTip window) to
display your HTML pages and more.

4.2.1 Comparison

For choosing the web framework we will use the following criteria.

4.2.1.1 Components

All of the web frameworks are component based. This means that component gets an input,
after internal behavior (function execution) it returns a rendered UI template as output.

4.2.1.2 ES6 vs ES5 vs TypeScript

Web frameworks have preferred script languages. ECMAScript is still primarily a scripting
language for web browsers, but last several years, TypeScript is becoming popular.

CHAPTER 4. PLATFORM REVIEW 9

4.2.1.3 Templates. JSX, HTML

JSX is an optional preprocessor for HTML-like syntax that will be compiled in Javascript
later.

JSX is a big advantage for development, because you have everything in one place, and
code completion and compile-time checks work better.

4.2.1.4 Framework vs Library

Libraries are the older concept and these are just collection of utility classes/methods your
code calls upon to get some functionality.

Frameworks, on the other hand, contain some functionality or flow and calls your code
to extend or make the flow a specific one.

4.2.2 Web Framework

As mentioned before, web framework is a software framework that is designed to support
(and speed up) the development of web applications including web services, web resources,
and web APIs [12].

Nowadays the most popular and powerful frameworks are Angular, Vue.js, ReactJs.

4.2.2.1 Angular

Angular is a TypeScript-based Javascript framework. Developed and maintained by Google
[4], it’s described as a “Superheroic JavaScript MVC Framework”.

Angular combines declarative templates, dependency injection, end to end tooling, and
integrated best practices to solve development challenges. Angular is used by Google, Wix,
weather.com, healthcare.gov and Forbes.

Angular is good for building highly interactive web applications.

4.2.2.2 ReactJs

React is described as “a JavaScript library for building user interfaces” [11]. React is
also called as “the V in the Model-View-Controller structure”. At the heart of all React
applications are components.

A component is a self-contained module that renders some output. We can write interface
elements like a button or an input field as a React component. Components are composable.

A component might include one or more other components in its output. React is used
by Facebook, Instagram.

4.2.2.3 Vue.js

Vue.js is one of those new software technologies that are being widely used across the world
for web development [5]. Vue.js is actually a JavaScript framework with various optional
tools for building user interfaces.

CHAPTER 4. PLATFORM REVIEW 10

4.2.2.4 Table of comparison

Criteria ReactJs Angular Vue.js
Is component based? Yes Yes Yes
ES6 vs ES5 vs TypeScript ES6 TypeScript ES5
JSX, HTML JSX HTML HTML
Framework vs Library Library Framework Library

Table 4.2: Comparison of ReactJs, Angular ana Vue.js

4.2.2.5 Selection

Every of frameworks has it’s own advantages and disadvantages. Angular is the most power-
ful among all of them. Vue.js has the biggest level of flexibility. ReactJs in turn concentrates
more on dynamism. Depending on my personal preferences in this work ReactJs will be
chosen for the following reasons:

• ReactJs has compatibility with JSX

• This work is not supposed to be big, so ReactJs will be more suitable for developing
such application.

• ReactJs has a high quality base of additional libraries

4.3 Redux

In order to avoid uncontrolled state jumps between components, we need a way to properly
transfer states. It is hard to keep the track from where (which component) the data is coming
from. In React there is one way data flow. React would pass down the data from first level
component to second level component and so on, which is not the best practice and Redux
solves this state transfer problem.

Redux is a concept of data storing and communication within an application in the client-
side (in the browser) [7]. It is suitable for single-page applications where state management
can become complex over time. Redux is not associated with any particular framework, but
it was developed especially for React.

The data in the React is "flowing" through the components. This is called a "unidirec-
tional data flow" – the data flow goes in one direction, from the parent to the child. It is
not obvious how two components that are not related to the parent-child relationship will
interact with each other.In React, it is not recommend to implement a component’s direct
interaction.

CHAPTER 4. PLATFORM REVIEW 11

Figure 4.1: Redux data flow

Here handy Redux. Redux offers to store all application state in one location called
"store". The components "Send" the state change to the store, not directly to other compo-
nents. The components that should be aware of these changes are "subscribed" to the vault.
(see Figure 4.1)

Redux can also be described like a backend’s database on the client-side where developer
store all the required information that is required in order to generate the view. It helps
developer to to query SELECT, INSERT and UPDATE the data into the database.

4.4 JSON Web Token (JWT)

JSON Web Token (JWT) is an open standard that defines a compact and self-contained way
for securely transmitting information between parties as a JSON object [13].

The most common scenario for using JWT is an authentication. Once the user is logged
in, each subsequent request will include the JWT, allowing the user to access routes, services,
and resources that are permitted with that token.

JWTs can be signed using a secret or a public/private key pair. A big advantage of JWT
is signed tokens. Signed tokens can verify the integrity of the claims contained within it.

JWT offers the following features:

CHAPTER 4. PLATFORM REVIEW 12

• Compact. They are small, that’s why JWTs can be sent through a URL, POST
parameter, or inside an HTTP header.

• Self-contained. The payload contains all the required information about the user.

JSON Web Tokens consist of three parts separated by dots, which are:

• Header. It consists of two parts: the type of the token and hashing algorithm.

• Payload. It contains claims. Claims are statements about an entity and additional
metadata.

• Signature. This part is a sign combination of the encoded header, the encoded payload,
a secret, the algorithm specified in the header.

4.5 Jest

To perform unit testing of an application, we need a tool for this. Our application is based
on React, because of that, we will use Jest, React-specific test runner.

Jest is the unit testing framework for ReactJS project. It is provided and used by
Facebook themselves [9].

Other reasons for using Jest are:

• Automatically finds tests

• Automatically mocks dependencies

• Runs your tests with a fake DOM implementation

• Runs tests in parallel processes

Chapter 5

Application architecture overview

For the better understanding of how this application works it is needed to provide the full
image of the application structure.

Figure 5.1: Application architecture

In the image above is introduced the full flow of the application. In the first step user
will create custom form in the web application (Chapter 6). After submitting, client-side
part (Chapter 7) will generate the structured YAML file (which describes the way how dialog
will be reproduced) and sends to the server side (Chapter 7). After processing, server-side
uploads file to the DGI server. At this moment this dialog is available for use with Alexa
assistant. To achieve this goal it is needed to implement custom Alexa skill (Chapter 8)
which is managed by AWS Lambda function (Chapter 9) where the dialog is processed and
particular phrases send to Alexa. Alexa transforms text into voice format and here starts
the communication between user and Alexa.

13

Chapter 6

Design

6.1 Design the Application

Design or design specification focuses on criteria to be satisfied in designing a product.
Following the idea of application, the main frame should be divided into three parts:

• Left part – menu, where user can click on a particular item(type) and add to Central
part.

• Central part – place, where we see edited current form. Selected items will be added
at the end.

Figure 6.1: View of the main page. On the left, user selects inputs, these are added to the
central part for editing.

14

CHAPTER 6. DESIGN 15

6.1.1 Left part

In the left part, there are types of inputs, which can be clicked and added to central part.
Every item in the menu should contain Name to determine which item was selected.

Figure 6.2: View of the type

Also, left part contains two main buttons, Save and Clear. By clicking the Save button,
it will collect all of the inputs. When Clear button will be clicked, it should make the entire
form empty.

6.1.2 Central Part

Central part represents the form, where input types from Left part would be added. In
Central part, every form item should follow this structure:

• The head of form item should have:

– Item type. Could be on of those :

∗ Date
∗ Destination
∗ Checkbox
∗ Radio
∗ Number

– Help information

– Input question/phrase (changeable)

– Menu with :

∗ Button to add another item field.
∗ Button to open configuration menu.
∗ Button to delete an item.

• Body should contain item fields which are different for every item type.

• At the bottom of the particular item, there will be configuration menu with:

CHAPTER 6. DESIGN 16

– Input for the user’s question.

– Input for setting help information for a selected item.

Figure 6.3: View of the form item

6.2 Dialog design in YAML

The DGI (Dialog graph interpreter) handles dialogs, represented in YAML. The DGI system
is available online. The (YAML) dialog consists of states(nodes). The basic functionality is
’SAY’ and ’GOTO’. ’GOTO’ command has two variants:

1. transition to the next node,

2. first asking the user for response, then transit to the specified node. (See example in
Chapter 8)

Dialog in YAML has three main nodes:

• WELCOMEPOINT
This is where the run process will start. If user starts Alexa skill, the greetings from
WELCOME POINT is used. After user response, the utterance is sent to ENTRY-
POINT node.

• ENTRYPOINT
If user starts with utterance (i.e "Alexa, ask skill for the weather" or Slack), the dialog
starts by processing the user input.

• EXITPOINT
Represents end of the conversation, says goodbye to the user and ends the dialog.

CHAPTER 6. DESIGN 17

Figure 6.4: Example of YAML dialogue process used in our app, In square brackets we have
shown the node types.

6.3 Process life cycle

The creation of voice form starts by creating the HTML-like form. Then it is exported and
uploaded to online server (DGI). Afterwards, upon invocation of voice app (Alexa), DGI is
queried and generates responses (questions) The whole process looks like this:

1. Steps from application point of view

(a) Create a form using an application

(b) Generate YAML file with steps depended on the User input

(c) Upload YAML file to DGI

2. Speech processing steps

(a) Alexa sends input to a Lambda AWS
AWS Lambda is a compute service that lets you run code without provisioning
or managing servers.

(b) Lambda AWS communicates with DGI (user input, Alexa output)

(c) DGI performs NLP (Nature-language processing), validation, entity recognition
and saves data. Returns an answer to Alexa (via AWS Lambda)

For better understanding of individual steps and the life cycle of application, here is the
approximate example.

1. User opens skill: "Alexa, open Form Builder"

2. Alexa finds the skill (by name)

3. Sends the "Launch intent" to AWS Lambda

CHAPTER 6. DESIGN 18

4. Lambda contacts DGI (provides no user input)

5. DGI constructs welcome response (with the first question) and sends it back to Lambda

6. Lambda transforms it to the correct format (speechless) and sends it to Alexa

7. Alexa says welcome message (i.e.: "Welcome to FormBuilder. When are you leaving
for the trip?")

8. User says: "I’m leaving tomorrow"

9. Alexa sends the utterance to Lambda

10. Lambda includes the user’s utterance and sends it to DGI

11. DGI calls NLP: Intent detector.

12. NLP intent detector returns: intent = DEPARTURE_DATE

13. DGI calls NLP: Entity detector

14. NLP returns entity: type: DATE, value: 2018-11-22

15. DGI calls NLP: validation

16. NLP validation returns: OK or not OK

17. DGI sets the (form/dialog) variable: departure_date = 2018-11-22 if validation was
OK

18. DGI constructs next question (or ends the dialog)

19. (a) DGI sends goodbye (if the form is complete) to Lambda (and signals the end of
dialog.

(b) DGI sends next question to Lambda. Then goes to step 6.

Figure 6.5: Process life cycle describing the flow from the user perspective: 1)form creation
and upload; 2) dialog flow via Alexa.

CHAPTER 6. DESIGN 19

6.4 UML class diagram

Figure 6.6: UML class diagram of the application. See description in chapter 6

Chapter 7

Implementation

The implementation part of this work will follow rules and contain all the requirements that
were described in Requirements and Design chapter.

7.1 Structure of the application

ReactJs is working with components, component is a concept similar to class, when calling
some particular component, it returns pre-designed HTML code.

React with Redux can be broadly broken down into:

• (store) Providers

• Container components

• Components

In this section, I will follow the UML class diagram (see Fig 5.6), where the structure
was shown.

7.1.1 "Provider" Redux

Provider acts as a dependency container that holds the store and makes it available for the
components to share the "state" of the application.

Store is a place where the current state of the application (with all related input, out-
put variables) is saved. This means that every change that was done in some component
(component A), saves to the store. Thanks to this, another component (component B),
which doesn’t have direct connection to the ’A’, knows about the changes not from "Parent"
component, but directly from store. (see Fig 6.1)

7.1.2 "Container" App.js

Container component is a component that is responsible for retrieving data, and in order to
get that data, the component needs to use Redux’s built in connect and mapStateToProps
functions. App.js is a component, where all of the generated HTML-code from React will
be saved.

20

CHAPTER 7. IMPLEMENTATION 21

7.1.3 "Component" FormGenerator.js

This component contains the main functionality of the application. It calls FormItem.js to
create item form, saves created form and uploads generated YAML to DGI (requirement #4,
#6 and #7), removes form (requirement #3).

7.1.4 "Component" DateComponent.js and other types

DateComponent.js represents the item that will be added to the form. Structure is the same
as on Fig 5.3. Depending on input variables from parent component, it creates desired form
item with the functionality described in requirements #2 and #6.

7.1.5 "Component" ComponentEdit.js

This component contains the editing menu which allows user manually set Question and
Help for the form item.

7.1.6 "Component" ComponentName.js

ComponentName.js allows the setting of input Question.

Figure 7.1: State sharing in React and React with Redux [14]. The main difference is that
communication between components is going throw Store, so all of them have current state
of the application.

7.2 Creating Form

Application allows user to create a custom form for representing user’s requests.
The main file for this goal is Form.js which contains both View and Controller logic.

This component represents the main frame in application. It contains Menu part with all of

CHAPTER 7. IMPLEMENTATION 22

the types, which could be added to form, Form part, where items will be saved and Saved
forms part, where user can see already created forms.

An example is available in chapter 8.

7.2.1 Adding form item

Form items are declared as parts of the form list. When a user selects some of the types
from the menu part, general count of items and count of selected item are incremented by
one. This was done so that each element had a unique index. At the same time, it calls
a concat method, which adds this particular item to the main list. During adding it calls
sub-component to be created with three inputs:

• key: Unique key of the form list

• id: Count of already created elements of this type

• index: Unique number for deleting item correctly, key couldn’t be used, because it
can’t be access from child component

Figure 7.2: Creating of form item

After, selected type calls a component to be created with pre-defined properties, which
are common for all of the types, such as:

• count of input fields of this form item

• list of input fields

• tooltip value

• boolean value – collapse (which determines if configuration menu is open or not)

• boolean value – tooltipOpen (which determines if tooltip Value can be seen or not)

And structure, which was described in Design chapter.

7.2.2 Removing form item

In ReactJs it is not enough just to delete item from the list. It will only imitate deletion,
but it still will be saved in list. In this case, developer has two choices:

CHAPTER 7. IMPLEMENTATION 23

1. The first one is to slice the list. By the index property you will find the index of item
which is supposed to be deleted, slice the list before this index and after and connect
this two parts.

2. The second one, which i prefer, is to filter the array. You create the instance of the
existing list, call filter property of array and save all of the items, except item with
specified index.

3. The third one is to mark form item as deleted (allows undelete action).

For this application we have used option number two.

7.2.3 Setting form item question

For a better user experience and more natural conversation with voice assistant I decided
to implement an opportunity for setting custom question which user would be asked during
filling form by his voice.

The structure contains three input fields with connected to them radio buttons. By
selecting one of this buttons appropriate input will be shaded and value will be set to ’Field
name’ and after pushing ’Name’ button, the full question is connected to this form item.
Using this system, in generated YAML, every ’Field name’ will be replaced with item field
name of specific form item.

In below example can be seen the setting of question for a Date type of item.

Figure 7.3: Structure of naming form item

CHAPTER 7. IMPLEMENTATION 24

7.2.4 Setting help to the form item

Help option supposed to add extra information about form item in text and voice format.
In case of dialog, when a user doesn’t know what to do, he can say ’help’ and this option
will be said.

Figure 7.4: An example of setting help

7.2.5 Adding/removing form item input fields

In this work we are using standard HTML inputs [15]. For adding an input field, user should
use the Add button in the upper-right corner of the form item. The process of adding and
removing of input field is the same as adding and removing an form item. All inputs are
added to the form item list of input fields with a unique key and number, which means the
number of inputs in this list. Deletion occurs by index and filtering.

7.3 Deletion of form

Deletion sets all counts for form item types to zero. Also it sets list of form items to be
empty. After this you can start from scratch in creating your custom form.

7.4 Export to YAML

After creating custom form and press submit button, export to YAML process starts. Firstly,
in Form.js file it calls createYaml() function is called, which in turn calls sub-functions,
which separately create the components of YAML file. YAML file is represented as String
in the application.

It uses the following sub-functions:

• createHeader() contains header information, such as name of created form, date,
author.

• createWelcomeNode() creates WELCOMEPOINT.

• createInputsNode() this creates node for every form input field, which user created.
ENTRYPOINT.

• createIntentEntityDetectorNode() black box.

CHAPTER 7. IMPLEMENTATION 25

• createExitNode() creates EXITPOINT.

After all of the functions were processed, and YAML file was created, fileDownload
function is called. It downloads created file with name consist of nameOfCreatedForm plus
.yaml extension. It saves the YAML to the DB and upload to DGI via REST POST.

Chapter 8

Testing

Testing of this work was divided on two parts.

• Unit testing.

• Testing functionality of web application.

• Testing dialog with Alexa.

8.1 Unit tests

Unit testing involves breaking your program into pieces, and subjecting each piece to a series
of tests.

For performing them I used Jest, JavaScript test runner. Those tests mounts a component
and check that it doesn’t throw an exception during rendering. Another type of tests controls
Component’s output. Basically, they controls the functionality of components functions.The
last one is testing event. When a user submits the form, the listener will call following
function only if the input is valid.

All unit tests are passing without errors.

8.2 Testing functionality of web application

We need to test functionality to make sure, that functional requirements have been done
properly.

Manually I’ve tested creation of form and the following modifications (i.e set item id, add
item sub-fields etc.) with form item, correctness of validation for form item fields, exporting
to YAML and uploading YAML to DGI. Every functionality is working as expected.

26

CHAPTER 8. TESTING 27

8.3 Testing dialog with Alexa

To verify, that we achieved our goal and able to fill created form by voice, we created several
trials of YAML file and upload them to DGI.

More about Alexa in chapter 8. Examples of correct and incorrect dialogs, also as an
example of YAML file are available in appendix A.

8.4 Compliance with requirements

The following table shows the functional and non-functional requirements and their imple-
mentation state together with test result.

Table 8.1: Compliance with requirements

Functional requirements Implemented Tested
Add/remove input form item Ë Ë

Set input form item id Ë Ë

Set input form item the constraints Ë Ë

Set input form item help Ë Ë

Add input form item sub-fields Ë Ë

Remove form Ë Ë

Export to YAML Ë Ë

Set validation for form item fields Ë Ë

Process filled form (data) Ë Ë

Localization: only en_US Ë Ë

Browser Portability Ë ?1

1May not work with old version of IE

Chapter 9

Alexa

One of the main requirements of this work was an opportunity to fill the form by your own
voice. To do this I have implemented custom Alexa skill powered AWS lambda function.

9.1 User - custom skill communication

The communication between the user and the custom skill is achieved via an Alexa powered
device such as the Echo. Activation of a particular skill is done by saying the skill’s invocation
name along with the trigger word (“Alexa”) which activates the Echo device. For example,
the command “Alexa, open form filling” will start the “Form filling” skill.

Upon activating the skill, the user is able to send other voice commands, or speech
requests, to the skill.

9.2 Skill structure

The Alexa skill consists of two main components: the skill interface and the skill service.
The skill interface processes the user’s speech requests and then maps them to intents

within the interaction model. The intents are actions that fulfill the spoken requests from
the user. Every intent has at least one utterance which the user might say to invoke the
intent. If a specific intent is detected, the skill interface creates a json encoded event, which
is passed to the skill service.

The skill service determines what actions to take in response to the JSON encoded event
received from the skill interface. Upon reaching a decision the skill service returns a JSON
encoded response to the skill interface for further processing. After processing, the speech
response is sent back to the user through the Echo.

28

CHAPTER 9. ALEXA 29

Figure 9.1: User-skill communication

9.3 Building custom skill

9.3.1 Building the Interaction Model

The Interaction model is a very important part of the skill. It contains the skill’s invocation
name, intents and utterances, etc., which are crucial for the interaction with the skill services.

Firstly it is needed to set up invocation name to start the interaction with our skill.

9.3.1.1 Intents and Slots

An intent represents an action that fulfills a user’s spoken request. Intents can optionally
have arguments called slots. A custom slot type defines a list of representative values for the
slot. Custom slot types are used for lists of items that are not covered by Amazon’s built-in
set of types. When using a custom type, you define the type and its values, and specify the
name of the type as part of the intent definition.

For our skill we needed:

• An intent that handles the user speech answer about Date. E.g. today, tomorrow, day
after tomorrow, next week, next month

• An intent that handles the user speech answer about Yes/No question.

• An intent that catches when a user said ’help’.

CHAPTER 9. ALEXA 30

(a) Intents (b) Slots

Figure 9.2: Interaction model example

9.3.2 Creating the AWS Lambda Function

The second part of user-skill communication is to create and configure the AWS lambda
function. This function receives events from and returns responses to the skill interface.
Events contain the information about the way in which the user is interacting with the skill
including the type of request user has triggered.

There are three main request types:

1. LaunchRequest is sent within the event to the Lambda function when the user invokes
the skill by saying its invocation name.

2. IntentRequest is sent within the event to the Lambda function when the user interacts
with the skill, i.e. when his speech request is mapped to an intent. The intent is also
inscribed in the event.

3. SessionEndedRequest is sent within the event to the Lambda function when the session
ends, due to an error, when the user says “exit”, when the user doesn’t respond while
the device is listening, or when the user says something that doesn’t match an intent
defined in the skill interface while the device is listening.

Amazon provides several languages which you can use to program. I’ve selected Python
because of the easy and clear code implementation and big base of great reviews from other
users.

CHAPTER 9. ALEXA 31

9.3.3 Alexa-AWS lambda connection

For the correctness work of implemented skill and clear communication between Alexa and
AWS lambda, you need to share Alexa skill id to the AWS lambda function and AWS lambda
function id to Alexa skill.

Chapter 10

Example dialog

10.1 Form creation

Here you can see the process of voice dialog creation on a trip planning task. The first step
is to create a form.

Figure 10.1: Example of form creation

32

CHAPTER 10. EXAMPLE DIALOG 33

We expect the user to input the departure and arrival date (in range of possible variants),
multiple choice of items that he would like to take, one of many selection of the reason for
this trip and two cities ’from’ and ’to’ user is going.

Second step is exporting to YAML

Listing 10.1: Pseudocode of generated YAML dialog
NodeList:

// This node greets user
welcomeNode:
node_type: "WELCOMEPOINT"
- action_01: "SAY"
condition: "!avail(’${global.f1.returning_user}’)"
reply: "Hello. Let’s begin. "
get_user_response: false
goto_node: "mainFormNode"

// Example of node where user will answer the question.
departure:
- action_01: "SAY"
reply: "When the departure time will be? "

- action_02: "GOTO"
get_user_response: true
goto_node: intentEntityDetectorNode

// Summarize all of the information said by user and controls if it’s right.
endDialogNode:
- action_01: "SAY"
reply: "Your departure will be ${dialog.f1.departure}, and arrival will be

${dialog.f1.arrival}. Your selected items are luggage, pass, and money.
You have preferred ${dialog.f1.reason} as reason. You have chosen
${dialog.f1.from} as from city, and ${dialog.f1.to} as to city. Is it
alright?"

- action_02: "GOTO"
get_user_response: true
goto_node: intentEntityDetectorNode

// In case user wants to start filling the form from scratch, this node will
clear all of the variables already defined.

clearThisDialog:
- action_01: "UNSET"
unset_variable: "${dialog.f1.departure} IF avail(’${dialog.f1.departure}’)"
...

- action_11: "GOTO"
get_user_response: true
goto_node: intentEntityDetectorNode

// Managing node. Describes the flow of dialog.
mainFormNode:
node_type: "ENTRYPOINT"
- action_01: "HELP_FOR_NEXT_NODE"

CHAPTER 10. EXAMPLE DIALOG 34

help: "Say one of this options: today, tomorrow, day after tomorrow, next
week, next month"

- action_02: "GOTO"
goto_node: "departure IF !avail(’${dialog.f1.departure}’) &&

!avail(’${dialog.f1.clearThisDialog}’)"

// Node where all variables will be set to user answers.
intentEntityDetectorNode:
- action_01: "SET"
set_variable: "${dialog.f1.departure} TO today IF dialog.userInputLast ==

’today’ && dialog.nodePrev == ’departure’"
...

- action_25: "GOTO"
goto_node: "mainFormNode"

// Indicates the end of dialog.
exitNode:
node_type: "EXITPOINT"

The last one is an example of dialog uploaded to DGI.

Listing 10.2: Dialog in command line. ’-’ generated text; ’»’ user input

- Hello. Let us begin.
- When the departure time will be?

>> today
- When the arrival time will be?

>> help
- Say one of this options: today, tomorrow, day after tomorrow, next week, next

month
>> tomorrow

- Would you take luggage with you?
>> yes

- Would you take pass with you?
>> yes

- Would you take money with you?
>> help

- Say ’Yes’ if you need this or ’No’ in other case
>> yes

- What is the reason for your trip? Business or vacation or other?
>> vacation

- What is the from city you are going?
>> Tokyo

- What is the to city you are going?
>> Prague

- So, for the vacation trip today you will go to Prague from Tokyo and come back
tomorrow. For this trip you will need pass and your luggage. Is it alright?
>> yes

- Thank you. See you later.

Chapter 11

Conclusion and future Work

In this work, we focused on solving the problem of filling forms with a voice. We discussed
a few different possible solutions that are available and focused on implementing a Web
application to create dynamic forms and then use them in the environment of Alexa voice
assistant.

11.1 Work accomplished

The main focus of our thesis was to implement a Web application for text into voice form
transformation. We have done research of the already existed solutions to this problem,
but due to non-compliance with the requirements, it was decided to implement our own
application to fulfill the expectations.

After reviewing the existing chat solutions, we concluded that the most appropriate for
us would be the Task-oriented dialog agents which is suited for short question-answer tasks.

The design of web application was provided in a simple way for user understanding and
comfortable using.

For the implementation of the application we have chosen ReactJs library of JavaScript
as client-side part which collects all of the information user gave to application and generates
YAML dialog and Redux for managing the server-side tasks, such as sending Yaml dialog to
the DGI server. More deep explanation is provided in Chapter 7.

To make sure that our application is working properly and generates a valid YAML dialog,
we did several tests on an existing chat platform (DGI). Also we did tests with the Alexa
voice assistant. The behavior was as expected and result could be seen in the demonstration
example. The application is running locally. Source and instructions are available on gitlab.

11.2 Future extensions

Future work concerns deeper analysis of particular mechanisms, new proposals to try different
methods, or simply curiosity. There are some ideas that I would have liked to try when during
the description and the development of the functionality in Chapter 6 and Chapter 7. This
thesis has been mainly focused on the use implementing fully functional example of form

35

CHAPTER 11. CONCLUSION AND FUTURE WORK 36

builder web application and completing more or less simple cases of tasks, leaving the study
of advanced tasks outside the scope of the thesis. The following ideas could be done:

1. To make sure that this dialog participates only to you it is needed to implement user
authentication with advanced user management.

2. It would be nice to share already created dialog with other users.

3. More flexible validation. Add constraints to particular fields.

4. Implement additional types that can be added to form.

Summarizing this, an extension to the application is the implementing more friendly
interface and providing the way of completing more difficult task with Alexa voice assistant.

Bibliography

[1] Gupta Gaurav. Mastering HTML5 Forms. ebook, 2013.

[2] Alex Colon. Amazon Echo. PCmag.com, 2015.

[3] Dave Roos. How Interactive Voice Response (IVR) Works. ebook, 2016.

[4] Angular. “What is Angular?” In: (2018). url: https://angular.io/docs.

[5] Ernando Chico. “What is Vue.js and What are its Advantages”. In: (2018). url:
https://hackernoon.com/what-is-vue-js-and-what-are-its-advantages-
4071b7c7993d.

[6] Clark Evans. “YAML Ain’t Markup Language”. In: (2018). url: http://yaml.org/
spec/1.2/spec.html.

[7] Gistia. “A Beginners Guide to Redux”. In: gistia.com (2018). url: http : / / www .
gistia.com/beginners-guide-redux/.

[8] Daniel Jurafsky. Speech and Language Processing. Stanford University, 2018.

[9] Jérôme Macias. “Jest, The React.js Unit Testing Framework, In Practice”. In: (2018).
url: https://marmelab.com/blog/2015/06/24/jest-in-practice.html.

[10] Jared Nance. “TypeScript vs. JavaScript”. In: (2018). url: https://stackify.com/
typescript-vs-javascript-migrate/.

[11] Nitin Pandit. “What Is ReactJS and Why Should We Use It?” In: (2018). url: https:
//www.c-sharpcorner.com/article/what-and-why-reactjs/.

[12] Robert R. Perkoski. Introduction to Web Development. ebook, 2018.

[13] Mikey Stecky-Efantis. “5 Easy Steps to Understanding JSON Web Tokens (JWT)”.
In: (2018). url: https://medium.com/vandium- software/5- easy- steps- to-
understanding-json-web-tokens-jwt-1164c0adfcec.

[14] Brad Westfall. “Learning react-redux”. In: (2018). url: https://css-tricks.com/
learning-react-redux/.

[15] MDN web docs. “<input>: The Input (Form Input) element”. In: (). url: https:
//developer.mozilla.org/en-US/docs/Web/HTML/Element/input.

37

https://angular.io/docs
https://hackernoon.com/what-is-vue-js-and-what-are-its-advantages-4071b7c7993d
https://hackernoon.com/what-is-vue-js-and-what-are-its-advantages-4071b7c7993d
http://yaml.org/spec/1.2/spec.html
http://yaml.org/spec/1.2/spec.html
http://www.gistia.com/beginners-guide-redux/
http://www.gistia.com/beginners-guide-redux/
https://marmelab.com/blog/2015/06/24/jest-in-practice.html
https://stackify.com/typescript-vs-javascript-migrate/
https://stackify.com/typescript-vs-javascript-migrate/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://www.c-sharpcorner.com/article/what-and-why-reactjs/
https://medium.com/vandium-software/5-easy-steps-to-understanding-json-web-tokens-jwt-1164c0adfcec
https://medium.com/vandium-software/5-easy-steps-to-understanding-json-web-tokens-jwt-1164c0adfcec
https://css-tricks.com/learning-react-redux/
https://css-tricks.com/learning-react-redux/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

	Introduction
	The purpose of the bachelor thesis
	Objectives

	Requirements
	Functional requirements
	Non-functional requirements

	Technology overview
	Voice response system
	Form builder
	YAML
	Alexa
	AWS Lambda

	Platform review
	JavaScript vs Typescript
	JavaScript
	TypeScript
	Comparison

	Selecting a Web Framework
	Comparison
	Components
	ES6 vs ES5 vs TypeScript
	Templates. JSX, HTML
	Framework vs Library

	Web Framework
	Angular
	ReactJs
	Vue.js
	Table of comparison
	Selection

	Redux
	JSON Web Token (JWT)
	Jest

	Application architecture overview
	Design
	Design the Application
	Left part
	Central Part

	Dialog design in YAML
	Process life cycle
	UML class diagram

	Implementation
	Structure of the application
	"Provider" Redux
	"Container" App.js
	"Component" FormGenerator.js
	"Component" DateComponent.js and other types
	"Component" ComponentEdit.js
	"Component" ComponentName.js

	Creating Form
	Adding form item
	Removing form item
	Setting form item question
	Setting help to the form item
	Adding/removing form item input fields

	Deletion of form
	Export to YAML

	Testing
	Unit tests
	Testing functionality of web application
	Testing dialog with Alexa
	Compliance with requirements

	Alexa
	User - custom skill communication
	Skill structure
	Building custom skill
	Building the Interaction Model
	Intents and Slots

	Creating the AWS Lambda Function
	Alexa-AWS lambda connection

	Example dialog
	Form creation

	Conclusion and future Work
	Work accomplished
	Future extensions

